翻訳と辞書
Words near each other
・ Entamoeba moshkovskii
・ Entamoeba polecki
・ Entamoebidae
・ Entandrophragma
・ Entandrophragma caudatum
・ Entanet
・ Entangled
・ Entangled (Partington)
・ Entangled (Red Dwarf)
・ Entangled (song)
・ Entanglement
・ Entanglement (graph measure)
・ Entanglement distillation
・ Entanglement witness
・ Entanglement-assisted classical capacity
Entanglement-assisted stabilizer formalism
・ Entanglements (Parenthetical Girls album)
・ Entarisi ala benziyor
・ Entartistes
・ Entasaf Al-Layl
・ Entasekera
・ Entasi
・ Entasis
・ Entasis (company)
・ Entatic state
・ Entdecker
・ Entdeckung der blauen Grotte auf der Insel Capri
・ Entdeckungsfels
・ Ente (film)
・ Ente Ammu Ninte Thulasi Avarude Chakki


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Entanglement-assisted stabilizer formalism : ウィキペディア英語版
Entanglement-assisted stabilizer formalism
In the theory of quantum communication, the entanglement-assisted stabilizer formalism is a method for protecting quantum information with the help of entanglement shared between a sender and receiver before they transmit quantum data over a quantum communication channel. It extends the standard stabilizer formalism
by including shared entanglement (Brun ''et al.'' 2006).
The advantage of entanglement-assisted stabilizer codes is that the sender can
exploit the error-correcting properties of an arbitrary set of Pauli operators.
The sender's Pauli operators do not necessarily have to form an
Abelian subgroup of the Pauli group \Pi^ over n qubits.
The sender can make clever use of her shared
ebits so that the global stabilizer is Abelian and thus forms a valid
quantum error-correcting code.
== Definition ==

We review the construction of an entanglement-assisted code (Brun ''et al.'' 2006). Suppose that
there is a nonabelian subgroup \mathcal\subset\Pi^ of size n-k=2c+s.
Application of the fundamental theorem of symplectic geometry (Lemma 1 in the first external reference)
states that there exists a minimal set of independent generators
\left\,\ldots,\bar_,\bar_,\ldots,\bar_\right\}
for \mathcal with the following commutation relations:
:
\left( \bar_,\bar_\right ) = 0\ \ \ \ \ \forall
i,j,
:
\left( \bar_,\bar_\right ) = 0\ \ \ \ \ \forall
i,j,
:
\left( \bar_,\bar_\right ) = 0\ \ \ \ \ \forall i\neq
j,
:\left\,\bar_\right\} = 0\ \ \ \ \ \forall i.

The decomposition of \mathcal into the above minimal generating set
determines that the code requires s ancilla qubits and c ebits. The code
requires an ebit for every anticommuting pair in the minimal generating set.
The simple reason for this requirement is that an ebit is a simultaneous
+1-eigenstate of the Pauli operators \left\ . The second qubit
in the ebit transforms the anticommuting pair \left\ into a
commuting pair \left\ . The above decomposition also
minimizes the number of ebits required for the code---it is an optimal decomposition.
We can partition the nonabelian group \mathcal into two subgroups: the
isotropic subgroup \mathcal_ and the entanglement subgroup
\mathcal_. The isotropic subgroup \mathcal_ is a commuting
subgroup of \mathcal and thus corresponds to ancilla
qubits:
:\mathcal_=\left\,\ldots,\bar_\right\} .
The elements of the entanglement subgroup \mathcal_ come in
anticommuting pairs and thus correspond to ebits:
:\mathcal_=\left\,\ldots,\bar_,\bar_,\ldots,\bar_\right\}
.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Entanglement-assisted stabilizer formalism」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.